3.326 \(\int \frac {\tan ^6(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx\)

Optimal. Leaf size=177 \[ \frac {\left (3 a^2+4 a b+8 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{8 b^{5/2} f}-\frac {(3 a+4 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{8 b^2 f}-\frac {\tan ^{-1}\left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f \sqrt {a-b}}+\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{4 b f} \]

[Out]

1/8*(3*a^2+4*a*b+8*b^2)*arctanh(b^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/b^(5/2)/f-arctan((a-b)^(1/2)*tan(
f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/f/(a-b)^(1/2)-1/8*(3*a+4*b)*(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)/b^2/f+1/4*(a+
b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)^3/b/f

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 177, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3670, 479, 582, 523, 217, 206, 377, 203} \[ \frac {\left (3 a^2+4 a b+8 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{8 b^{5/2} f}-\frac {(3 a+4 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{8 b^2 f}+\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{4 b f}-\frac {\tan ^{-1}\left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f \sqrt {a-b}} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^6/Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-(ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]]/(Sqrt[a - b]*f)) + ((3*a^2 + 4*a*b + 8*b^2)*Ar
cTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/(8*b^(5/2)*f) - ((3*a + 4*b)*Tan[e + f*x]*Sqrt[a + b
*Tan[e + f*x]^2])/(8*b^2*f) + (Tan[e + f*x]^3*Sqrt[a + b*Tan[e + f*x]^2])/(4*b*f)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 479

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(2*n
- 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*d*(m + n*(p + q) + 1)), x] - Dist[e^(2*n)
/(b*d*(m + n*(p + q) + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) + (a*d*(m +
 n*(q - 1) + 1) + b*c*(m + n*(p - 1) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d
, 0] && IGtQ[n, 0] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 582

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
 x_Symbol] :> Simp[(f*g^(n - 1)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*d*(m + n*(p + q
+ 1) + 1)), x] - Dist[g^n/(b*d*(m + n*(p + q + 1) + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*
f*c*(m - n + 1) + (a*f*d*(m + n*q + 1) + b*(f*c*(m + n*p + 1) - e*d*(m + n*(p + q + 1) + 1)))*x^n, x], x], x]
/; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 0] && GtQ[m, n - 1]

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \frac {\tan ^6(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^6}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{4 b f}-\frac {\operatorname {Subst}\left (\int \frac {x^2 \left (3 a+(3 a+4 b) x^2\right )}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{4 b f}\\ &=-\frac {(3 a+4 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{8 b^2 f}+\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{4 b f}+\frac {\operatorname {Subst}\left (\int \frac {a (3 a+4 b)+\left (3 a^2+4 a b+8 b^2\right ) x^2}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{8 b^2 f}\\ &=-\frac {(3 a+4 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{8 b^2 f}+\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{4 b f}-\frac {\operatorname {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}+\frac {\left (3 a^2+4 a b+8 b^2\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{8 b^2 f}\\ &=-\frac {(3 a+4 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{8 b^2 f}+\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{4 b f}-\frac {\operatorname {Subst}\left (\int \frac {1}{1-(-a+b) x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}+\frac {\left (3 a^2+4 a b+8 b^2\right ) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{8 b^2 f}\\ &=-\frac {\tan ^{-1}\left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{\sqrt {a-b} f}+\frac {\left (3 a^2+4 a b+8 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{8 b^{5/2} f}-\frac {(3 a+4 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{8 b^2 f}+\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{4 b f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.33, size = 768, normalized size = 4.34 \[ \frac {\frac {16 b^3 \sqrt {\cos (2 (e+f x))+1} \sqrt {\frac {(a-b) \cos (2 (e+f x))+a+b}{\cos (2 (e+f x))+1}} \left (\frac {\sin ^4(e+f x) \csc (2 (e+f x)) \sqrt {-\frac {a \cot ^2(e+f x)}{b}} \sqrt {-\frac {a (\cos (2 (e+f x))+1) \csc ^2(e+f x)}{b}} \sqrt {\frac {\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right )\right |1\right )}{4 a \sqrt {\cos (2 (e+f x))+1} \sqrt {(a-b) \cos (2 (e+f x))+a+b}}-\frac {\sin ^4(e+f x) \csc (2 (e+f x)) \sqrt {-\frac {a \cot ^2(e+f x)}{b}} \sqrt {-\frac {a (\cos (2 (e+f x))+1) \csc ^2(e+f x)}{b}} \sqrt {\frac {\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}} \Pi \left (-\frac {b}{a-b};\left .\sin ^{-1}\left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right )\right |1\right )}{2 (a-b) \sqrt {\cos (2 (e+f x))+1} \sqrt {(a-b) \cos (2 (e+f x))+a+b}}\right )}{\sqrt {(a-b) \cos (2 (e+f x))+a+b}}-\frac {b \left (3 a^2+4 a b+4 b^2\right ) \sin ^4(e+f x) \csc (2 (e+f x)) \sqrt {\frac {(a-b) \cos (2 (e+f x))+a+b}{\cos (2 (e+f x))+1}} \sqrt {-\frac {a \cot ^2(e+f x)}{b}} \sqrt {-\frac {a (\cos (2 (e+f x))+1) \csc ^2(e+f x)}{b}} \sqrt {\frac {\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right )\right |1\right )}{a ((a-b) \cos (2 (e+f x))+a+b)}}{4 b^2 f}+\frac {\sqrt {\frac {a \cos (2 (e+f x))+a-b \cos (2 (e+f x))+b}{\cos (2 (e+f x))+1}} \left (\frac {\tan (e+f x) \sec ^2(e+f x)}{4 b}-\frac {3 \sec (e+f x) (a \sin (e+f x)+2 b \sin (e+f x))}{8 b^2}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^6/Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

(-((b*(3*a^2 + 4*a*b + 4*b^2)*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*Sqrt[-((a*Cot[e
+ f*x]^2)/b)]*Sqrt[-((a*(1 + Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b)]*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Cs
c[e + f*x]^2)/b]*Csc[2*(e + f*x)]*EllipticF[ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]
/Sqrt[2]], 1]*Sin[e + f*x]^4)/(a*(a + b + (a - b)*Cos[2*(e + f*x)]))) + (16*b^3*Sqrt[1 + Cos[2*(e + f*x)]]*Sqr
t[(a + b + (a - b)*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*((Sqrt[-((a*Cot[e + f*x]^2)/b)]*Sqrt[-((a*(1 + Co
s[2*(e + f*x)])*Csc[e + f*x]^2)/b)]*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]*Csc[2*(e + f*x
)]*EllipticF[ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1]*Sin[e + f*x]^4)/(
4*a*Sqrt[1 + Cos[2*(e + f*x)]]*Sqrt[a + b + (a - b)*Cos[2*(e + f*x)]]) - (Sqrt[-((a*Cot[e + f*x]^2)/b)]*Sqrt[-
((a*(1 + Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b)]*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]*Csc
[2*(e + f*x)]*EllipticPi[-(b/(a - b)), ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt
[2]], 1]*Sin[e + f*x]^4)/(2*(a - b)*Sqrt[1 + Cos[2*(e + f*x)]]*Sqrt[a + b + (a - b)*Cos[2*(e + f*x)]])))/Sqrt[
a + b + (a - b)*Cos[2*(e + f*x)]])/(4*b^2*f) + (Sqrt[(a + b + a*Cos[2*(e + f*x)] - b*Cos[2*(e + f*x)])/(1 + Co
s[2*(e + f*x)])]*((-3*Sec[e + f*x]*(a*Sin[e + f*x] + 2*b*Sin[e + f*x]))/(8*b^2) + (Sec[e + f*x]^2*Tan[e + f*x]
)/(4*b)))/f

________________________________________________________________________________________

fricas [A]  time = 2.08, size = 817, normalized size = 4.62 \[ \left [-\frac {8 \, \sqrt {-a + b} b^{3} \log \left (-\frac {{\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b} \tan \left (f x + e\right ) - a}{\tan \left (f x + e\right )^{2} + 1}\right ) - {\left (3 \, a^{3} + a^{2} b + 4 \, a b^{2} - 8 \, b^{3}\right )} \sqrt {b} \log \left (2 \, b \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {b} \tan \left (f x + e\right ) + a\right ) - 2 \, {\left (2 \, {\left (a b^{2} - b^{3}\right )} \tan \left (f x + e\right )^{3} - {\left (3 \, a^{2} b + a b^{2} - 4 \, b^{3}\right )} \tan \left (f x + e\right )\right )} \sqrt {b \tan \left (f x + e\right )^{2} + a}}{16 \, {\left (a b^{3} - b^{4}\right )} f}, -\frac {4 \, \sqrt {-a + b} b^{3} \log \left (-\frac {{\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b} \tan \left (f x + e\right ) - a}{\tan \left (f x + e\right )^{2} + 1}\right ) + {\left (3 \, a^{3} + a^{2} b + 4 \, a b^{2} - 8 \, b^{3}\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-b}}{b \tan \left (f x + e\right )}\right ) - {\left (2 \, {\left (a b^{2} - b^{3}\right )} \tan \left (f x + e\right )^{3} - {\left (3 \, a^{2} b + a b^{2} - 4 \, b^{3}\right )} \tan \left (f x + e\right )\right )} \sqrt {b \tan \left (f x + e\right )^{2} + a}}{8 \, {\left (a b^{3} - b^{4}\right )} f}, -\frac {16 \, \sqrt {a - b} b^{3} \arctan \left (-\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a}}{\sqrt {a - b} \tan \left (f x + e\right )}\right ) - {\left (3 \, a^{3} + a^{2} b + 4 \, a b^{2} - 8 \, b^{3}\right )} \sqrt {b} \log \left (2 \, b \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {b} \tan \left (f x + e\right ) + a\right ) - 2 \, {\left (2 \, {\left (a b^{2} - b^{3}\right )} \tan \left (f x + e\right )^{3} - {\left (3 \, a^{2} b + a b^{2} - 4 \, b^{3}\right )} \tan \left (f x + e\right )\right )} \sqrt {b \tan \left (f x + e\right )^{2} + a}}{16 \, {\left (a b^{3} - b^{4}\right )} f}, -\frac {8 \, \sqrt {a - b} b^{3} \arctan \left (-\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a}}{\sqrt {a - b} \tan \left (f x + e\right )}\right ) + {\left (3 \, a^{3} + a^{2} b + 4 \, a b^{2} - 8 \, b^{3}\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-b}}{b \tan \left (f x + e\right )}\right ) - {\left (2 \, {\left (a b^{2} - b^{3}\right )} \tan \left (f x + e\right )^{3} - {\left (3 \, a^{2} b + a b^{2} - 4 \, b^{3}\right )} \tan \left (f x + e\right )\right )} \sqrt {b \tan \left (f x + e\right )^{2} + a}}{8 \, {\left (a b^{3} - b^{4}\right )} f}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^6/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/16*(8*sqrt(-a + b)*b^3*log(-((a - 2*b)*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)*tan(f*x
+ e) - a)/(tan(f*x + e)^2 + 1)) - (3*a^3 + a^2*b + 4*a*b^2 - 8*b^3)*sqrt(b)*log(2*b*tan(f*x + e)^2 + 2*sqrt(b*
tan(f*x + e)^2 + a)*sqrt(b)*tan(f*x + e) + a) - 2*(2*(a*b^2 - b^3)*tan(f*x + e)^3 - (3*a^2*b + a*b^2 - 4*b^3)*
tan(f*x + e))*sqrt(b*tan(f*x + e)^2 + a))/((a*b^3 - b^4)*f), -1/8*(4*sqrt(-a + b)*b^3*log(-((a - 2*b)*tan(f*x
+ e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)*tan(f*x + e) - a)/(tan(f*x + e)^2 + 1)) + (3*a^3 + a^2*b +
4*a*b^2 - 8*b^3)*sqrt(-b)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-b)/(b*tan(f*x + e))) - (2*(a*b^2 - b^3)*tan(
f*x + e)^3 - (3*a^2*b + a*b^2 - 4*b^3)*tan(f*x + e))*sqrt(b*tan(f*x + e)^2 + a))/((a*b^3 - b^4)*f), -1/16*(16*
sqrt(a - b)*b^3*arctan(-sqrt(b*tan(f*x + e)^2 + a)/(sqrt(a - b)*tan(f*x + e))) - (3*a^3 + a^2*b + 4*a*b^2 - 8*
b^3)*sqrt(b)*log(2*b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(b)*tan(f*x + e) + a) - 2*(2*(a*b^2 - b
^3)*tan(f*x + e)^3 - (3*a^2*b + a*b^2 - 4*b^3)*tan(f*x + e))*sqrt(b*tan(f*x + e)^2 + a))/((a*b^3 - b^4)*f), -1
/8*(8*sqrt(a - b)*b^3*arctan(-sqrt(b*tan(f*x + e)^2 + a)/(sqrt(a - b)*tan(f*x + e))) + (3*a^3 + a^2*b + 4*a*b^
2 - 8*b^3)*sqrt(-b)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-b)/(b*tan(f*x + e))) - (2*(a*b^2 - b^3)*tan(f*x +
e)^3 - (3*a^2*b + a*b^2 - 4*b^3)*tan(f*x + e))*sqrt(b*tan(f*x + e)^2 + a))/((a*b^3 - b^4)*f)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan \left (f x + e\right )^{6}}{\sqrt {b \tan \left (f x + e\right )^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^6/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(tan(f*x + e)^6/sqrt(b*tan(f*x + e)^2 + a), x)

________________________________________________________________________________________

maple [A]  time = 0.33, size = 261, normalized size = 1.47 \[ \frac {\sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}\, \left (\tan ^{3}\left (f x +e \right )\right )}{4 b f}-\frac {3 a \tan \left (f x +e \right ) \sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}}{8 f \,b^{2}}+\frac {3 a^{2} \ln \left (\tan \left (f x +e \right ) \sqrt {b}+\sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}\right )}{8 f \,b^{\frac {5}{2}}}-\frac {\sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}\, \tan \left (f x +e \right )}{2 b f}+\frac {a \ln \left (\tan \left (f x +e \right ) \sqrt {b}+\sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}\right )}{2 f \,b^{\frac {3}{2}}}+\frac {\ln \left (\tan \left (f x +e \right ) \sqrt {b}+\sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}\right )}{f \sqrt {b}}-\frac {\sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {\left (a -b \right ) b^{2} \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}}\right )}{f \,b^{2} \left (a -b \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^6/(a+b*tan(f*x+e)^2)^(1/2),x)

[Out]

1/4*(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)^3/b/f-3/8/f/b^2*a*tan(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2)+3/8/f/b^(5/2)*a^
2*ln(tan(f*x+e)*b^(1/2)+(a+b*tan(f*x+e)^2)^(1/2))-1/2*(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)/b/f+1/2/f*a/b^(3/2)*
ln(tan(f*x+e)*b^(1/2)+(a+b*tan(f*x+e)^2)^(1/2))+1/f*ln(tan(f*x+e)*b^(1/2)+(a+b*tan(f*x+e)^2)^(1/2))/b^(1/2)-1/
f*(b^4*(a-b))^(1/2)/b^2/(a-b)*arctan((a-b)*b^2/(b^4*(a-b))^(1/2)/(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e))

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^6/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\mathrm {tan}\left (e+f\,x\right )}^6}{\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e + f*x)^6/(a + b*tan(e + f*x)^2)^(1/2),x)

[Out]

int(tan(e + f*x)^6/(a + b*tan(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan ^{6}{\left (e + f x \right )}}{\sqrt {a + b \tan ^{2}{\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**6/(a+b*tan(f*x+e)**2)**(1/2),x)

[Out]

Integral(tan(e + f*x)**6/sqrt(a + b*tan(e + f*x)**2), x)

________________________________________________________________________________________